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Abstract

Data fusion using Kalman filters requires reasonably good error models. Our
intention to fuse line segments, corners and edges obtained from a laser scanner
and from advanced sonars provided the motivation on the investigation of Sick
PLS laser scanner range measurement reliability, and line segment estimation pre-
cision. We present an approach for fitting lines straight in the lasers polar coordi-
nate system, which enables a simple estimation of line parameter covariance. We
also develop systematic error models for line parameter estimation. Finally we
measure our systematic and random error models experimentally, and show, that
systematic errors can be larger than random ones.
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1 Introduction

The motivation for the work behind this technical report is our aim to perform simul-
taneous localization and mapping (SLAM) by fusing data from advanced sonars and a
laser range finder.

The advanced sonars mounted on our robot Slambot are not just capable of mea-
suring range and bearing of objects with excellent precision [10] (σbearing ≈ 0.1◦ and
σrange ≈ 0.2 mm), but they are also capable of classifying objects as planes, corners
or edges.

Slambots laser scanner is a SICK PLS101-112. Contrary to the common belief,
measurements obtained of an object using this particular sensor are in general less
precise, than that of advanced sonar. We are planning to perform sensor fusion in a
Kalman filter fashion, i.e. by weighting measurements according to their error estimate.
Therefore it is essential for us to know how accurate are lines estimated from laser
scans. To estimate the uncertainty in the line parameters, it is necessary to find out how
precise are the range measurement of the laser.

By looking at the method of range measurement, there are 3 major laser scanners
types [6]: Amplitude Modulated Continuous Wave lasers, time-of-flight lasers and Fre-
quency Modulated Continuous Wave lasers. We are interested only in time-of-flight
lasers like the PLS, because different principles of operation might introduce different
types of errors.

When characterizing a laser scanner, researchers among others look at the following
properties (as in [14][18]): the dependence of range error on the distance of the object,
orientation of the object, surface properties of the object and operation time. When
measuring the effect of distance and target plane angle on accuracy, usually a special
calibration tool is used which contains a target plane which can be translated along
one axis and rotated around another axis either manually [14] or through automatic
control [18]. In paper [14] for a time-of-flight laser scanner manufactured by Schwartz
Electro-optics Inc., and in [18] for a Sick LMS 200 laser scanner, the authors measured
a range error depending on distance.

In [14], they report that range error increases with increasing angle between target
plane normal and laser beam. In [18], the error changes with the incidence angle but
instead of growing monotonously, it gets smaller after30◦. There is neither an expla-
nation nor a qualitative description for these behaviors in these papers. In both papers,
targets with different surface properties were tested and the general conclusion was that
the reflectivity of the target had a more significant effect on the range error than color.

According to both papers, a range error drift of both lasers was observed during
warm-up.
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Even though the existence of systematic errors in laser scanners is known, their
effect in feature extraction or scan matching is often neglected. A rare example for the
opposite can be found in [13], where the authors analyzed the effect of bias in range
measurements on position estimates resulting from scan matching.

The effect of systematic and non-systematic errors in the range readings on esti-
mated line parameters depends on the line fitting method. There are several approaches
for line fitting used. In [11], a local Cartesian coordinate system is placed into the cen-
ter of gravity of a line segment, with the vertical axis pointing in the opposite direction,
than that of the laser. The regression coefficient of the line is determined by linear
regression, which is sensitive to noise for vertical lines. From the knowledge of the
center of gravity and the regression coefficient the angle and perpendicular distance
parameters of the normal form of a line are calculated. The covariance of the angle
and distance estimate of the line is derived, under the assumption of error free laser
bearings.

The author in [8] uses the solution given in [3], where the angle and distance param-
eters of a line are estimated by minimizing the sum of square perpendicular distances of
the points from the line in Cartesian coordinate system. A simple covariance estimate
is given of the line parameters, assuming uniform covariance of each point. However
this assumption is only valid for short line segments if data is obtained from a laser
range finder utilizing a rotating mirror.

Similarly to [8] in [1] the authors minimized the sum of square perpendicular dis-
tances of points to a line in Cartesian coordinate system, however their solution ac-
counts for nonuniform weights of points. They also show an equivalent solution with
polar coordinates, which was used to derive a line parameter covariance estimate as-
suming only errors in the range measurements.

Contrary to the previously described methods, in [15] the authors take advantage
of the description of a line in polar coordinate system, and minimize the sum of square
errors of reciprocal ranges. However we believe that due to the use of the reciprocal of
the range, their approach implicitly weights closer points more than further ones.

In all of these papers, systematic errors are neglected in line estimates, and little ex-
perimental evidence is presented to support error models. Systematic errors are shown
in this report to be a significant component of the final errors in line parameters for the
Sick PLS.

In this report we develop an approach for fitting lines straight in polar coordinate
system which enables simple covariance estimation. Then we describe the results of
experiments aimed at determining the influence of several factors on the PLS range
systematic errors. The results are used to derive systematic error models which describe
how the factors influence systematic errors in line estimates. Finally experimental
validation of the constructed systematic and non-systematic error models is undertaken.

2 Laser Line Error Model

2.1 Specifications of the SICK PLS Laser Sensor

Probably two of the most common laser scanners mounted on mobile robots are the
SICK PLS (see fig. 1) and the newer LMS. In this report only the PLS 101-112 version
is going to be dealt with.

A rotating mirror inside the PLS sensor deflects an infrared laser beam in the range
from 0◦ to 180◦ [4]. Distance is determined by measuring the time of flight of the
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Figure 1: SICK PLS101-112 laser range finder.

emitted laser pulses. The resolution of the sensor is 5 cm in the distance, and maximally
0.5◦ in the angles. The worst case error according to [4] is 94 mm at the distance of
2 m and 131 mm at 4 m. One180◦ scan takes 40 ms to complete. The maximum range
of the sensor is 50 m. Measurements from the sensor are transmitted to a PC through a
serial line. The LMS sensor is an improved version of the PLS. Its angular resolution
has been reduced to0.25◦. Its distance resolution has been reduced to 1 cm. Due to the
improved capabilities of the LMS sensor, the error models developed here for the PLS
may not be applicable for the LMS sensor.

The patent [17] of the Deutches Patent Amt describes the operation of a laser range
finder, which is very similar to the PLS. Therefore we assume, that the PLS and the
patent [17] are related. The laser range finder described in [17] works the following
way: A laser source sends out a pulse of 3.5 ns duration and a counter of 330 ps
resolution is started. The 330 ps time resolution results in 5 cm distance resolution.
The returned pulse is detected by a photo receiver. The output from the receiver is
fed into a comparator. When the received signal is 7 times larger than the average
noise level of the photo receiver, then the output of the comparator stops the counter.
Comparing the output of the photo receiver with multiples of the average noise level
measured on the photo receiver helps to keep false detection rate low.

Returning light pulses with different light intensities generate signals on the photo
detector with different rise times. In an example from [17], the change in the rise time
generates a 20 cm error in the range measurement. To correct for this error, a peak
detector consisting of ECL comparators is employed to discriminate between 6 levels.
The output of the peak detector is fed into a microprocessor, where the time of flight
is compensated for the rise time error. However as we will show later, the 6 level
resolution results in easily detectable errors.

The following factors with a possible influence on the precision of line segment
parameters measured by the laser have been identified:

1. Random errors in the range measurements.

2. Bias in the range quantization error.

3. Bias changing with the incidence angle of laser beam and target surface.

4. Constant bias in the range measurements.

5. Range bias growing with distance.

6. Laser plane misaligned with the floor.

7. Error in the laser beam bearings.
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(a) (b)

Figure 2: Laser calibration tool made from old printer a), “perfect” corner b).

In the following subsections, we will focus on most of the above mentioned error
sources and discuss their contribution to the overall error. In this work, errors due
to imprecise laser beam bearings are not considered.

2.2 Laser Calibration Tools

For evaluation of the line error models and for testing of the Sick PLS, two tools were
used. The first tool resembles a perfect right angle corner with 60 cm long arms (see
fig. 2b). The angle of the corner was estimated as89.85◦ ± 0.3◦ the following way:
Tape measure was used to measure the length of the arms and the hypotenuse. Then the
cosine law was applied to calculate the opening angle of the corner. The error bounds
were obtained by assuming±1 mm error in the measurements. The surface of the
corner has a rather shiny finish with visible specular reflections.

The inspiration for the second tool used came from [18], where the authors used
a 4 m linear motion table with a rotating target plane mounted on it. We created a
similar, but inexpensive setup (see fig. 2a), by recycling the head moving mechanism
of a discarded printer. We replaced the head with a 16x16 cm target plane rotated by
a stepper motor from a 5.25” floppy drive. The target planes surface was covered with
thick, white, non-glossy paper. The mechanism was controlled by a PC running Linux.
The achieved resolution in distance and angle was 0.3 mm and1.8◦.

2.3 Line Representation and Identification

The normal form representation of a line is described by the following equation in a
Cartesian coordinate system(X, Y ) (see fig. 3a):

x cos(α) + y sin(α) = d (1)

whereα is the angle between the X axis and the normal of the line, andd ≥ 0 is
the perpendicular distance of the line to the origin. However, x and y are a function
of the angle of the laser beam (φ) and the measured range (r). Therefore it is often
more convenient to work with a line in the laser range finder’s polar coordinate system
(Φ, R) (see fig. 3b), where a line is represented with the well known equation (see
appendix A.1 for derivation):

r =
d

cos(α− φ)
(2)
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Figure 3: Line in Cartesian (X, Y ) and in polar (R,Φ) coordinate system.

As it can be seen from fig. 3b, the curve representing a line is uniquely described with
the coordinates of its minimum(α, d).

To identify the parameters of a line from measured data points, several approaches
can be used. For example, the equations for linear regression (eq. 4-5) can be used to
determine the parameters of a line in slope-intercept form (eq. 3) and then convert the
resulting line into normal form using eq. 6-7 (see appendix A.2). E.g:

y = kx + q (3)

where,

k =
n
∑

xiyi − (
∑

xi)(
∑

yi)
n
∑

x2
i − (

∑
xi)2

(4)

q =
∑

yi − k
∑

xi

n
(5)

Then use

α = arccos
−k√
1 + k2

+ (sign(q)− 1)
π

2
(6)

d =
|q|√

1 + k2
(7)

The drawbacks of the above mentioned approach are the following:

1. For vertical lines the results are imprecise due to numerical instability resulting
from small numbers in the denominator of eq. 4.

2. The cost function being minimized doesn’t reflect the way the data points were
collected. The points being processed in(X, Y ) are the result of a nonlinear
transformation of points from(Φ, R) what makes errors in the x and y coordi-
nates correlated. Due to the cost function, not the sum of squared distances of
points from the line is minimized, but the sum of square errors in y coordinates.
Thus errors in x coordinates are not regarded.

3. For us the derivation of a covariance estimate for(k, q) based upon the uncer-
tainty in (φ, r) is not really simple.
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However, for horizontal lines with no random noise in the range, the above mentioned
method works fine, therefore we will use it later due to its simplicity for the derivation
of some results.

A better approach than the previous one is to minimize the sum of square perpen-
dicular distances of points from lines (see appendix A.3). However, we developed an
approach for finding out(α, d) with its estimated uncertainty directly in(Φ, R) coor-
dinate system for the price of linearization.

If we linearize eq. 2 around(α0, d0), we get

ri − r0i ≈
d0 sin(α0 − φi)
cos2(α0 − φi)

∆α +
1

cos(α0 − φi)
∆d (8)

This is restated in vector form as

∆r = rm − r0 = H0∆b + R (9)

Where

H0 =

 . . . . . .
d0 sin(α0−φi)
cos2(α0−φi)

1
cos(α0−φi)

. . . . . .

 (10)

∆b =
[

∆α ∆d
]T

(11)

R is a vector of measurement noise with a covariance matrixσ2
rI, rm is a vector

containing measured ranges andr0 is a vector representing ranges estimated using
(α0, d0).

Using the common linear regression (see [16]) iteratively on the linearized problem
(eq. 8), we can find(α, d) which minimizes the square sum of range residuals, the
following way:

rj =
[

rj1 . . . rji . . . rjn

]T =

=
[

. . .
dj

cos(αj−φi)
. . .

]T
(12)

Hj =

 . . . . . .
dj sin(αj−φi)
cos2(αj−φi)

1
cos(αj−φi)

. . . . . .

 (13)

∆b =
(
HT

j Hj

)−1
HT

j (rm − rj) (14)[
αj+1

dj+1

]
=
[

αj

dj

]
+ ∆b (15)

Eq. 14 yields the least squares estimate, and can be found for example in [9]. By
initializing rj with (α0, d0) obtained from either eq. 4-7, or from minimizing the per-
pendicular distance of points from the line (see eq. 132-133), this iterative process
converges quickly. The advantage of the above mentioned approach is that a simple
covariance estimate is obtained due to the use of linear regression [16]:

cov(∆b) = cov(α, d) = σ2
r(HTH)−1 (16)

where the noise in the range measurements is assumed to be zero mean white noise
with a variance ofσ2

r . However the noise is correlated as will be seen in results below.
The use of eq. 16 also assumes that there is no error in the measurement ofφi.
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Figure 4: Laser scan of a line in Cartesian (X, Y ) and in polar (R,Φ) coordinate sys-
tem.
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Figure 5: Distribution of laser measurements of one point of a wall.

2.4 Errors Due to Quantization and Random Noise

Figure 4a shows a laser scan of a wall in(X, Y ) coordinate system. The arc shapes
in the figure are the results of range quantization as it can be better seen in(Φ, R)
coordinate system (fig. 4b). Even though a 5 cm quantization step can be observed
most of the time, there are some readings, which are between 2 quantization levels.
Furthermore, from time to time, all range measurements shift randomly by±1 cm
for the duration of one scan. This is depicted on fig. 5 which shows a distribution of
200k samples taken of the same point. The small bars on both sides of the main peaks
demonstrate this 1 cm shift. Judging from the results of other experiments, it seems,
that the 1 cm shift occurs with roughly the same probability in both directions. Since
the shift occurs for all measurements of a particular scan, we categorize this error as a
bias shift, and will deal with it later.

For our statistical analysis of the quantization error we approximate the measure-
ment process with the following model: to the true ranger′ zero mean white Gaussian
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Figure 6: Effect of quantization on the PLS output: a) simulation, b) measurement

noisern ∼ N(0, σ2
n) is added, and the result is fed into an ideal, truncating quantizer.

Using the same approach as described in [2], the following equations were derived
which describe the mean and variance of error in the truncating quantizer output ifr′

is given:

P (ri|r′) = F
(
(i + 1) qr − r′; 0; σ2

n

)
− F

(
iqr − r′; 0; σ2

n

)
(17)

E(rq − r′) =
+∞∑

i=−∞
(iqr − r′) P (ri|r′) (18)

var(rq − r′) =

[
+∞∑

i=−∞
(iqr − r′)2 P (ri|r′)

]
− [E(rq − r′)]2 (19)

whereP (ri|r′) is the probability of the sensor returning rangeri given the true range
r′, F is the cumulative distribution function of a normal random variable,qr = 5 cm
is the quantization step andrq is the output of the quantizer. When investigating the
quantization effect in the output of the PLS sensor, Jensfelt in [8] presents similar
equation as eq. (17,19), however he assumes a rounding quantizer, and doesn’t consider
the bias in the quantization error. A graph obtained by simulation of the change of the
variance with the true distance is also shown in [8].

Figure 6a contains the results from eq. 17-19, forσn = 1.7 cm. On the graph, the
mean error was shifted up by half the quantization step (2.5 cm) for scaling reasons.
The value ofσn was chosen so that the noise standard deviation maximum of the quan-
tizers output would match the measured one shown later. The knowledge of the noise
standard deviation prior quantization (σn) is important for simulation purposes. From
observing the simulation results, the mean error due to the quantizer, or quantization
bias can be described as a sinusoid with a small amplitude:

rqb = b sin
(

(r′ −Q(r′))
2π

qr

)
− qr

2
(20)

whereb = 0.16 cm andQ(r′) is the quantized representation ofr′. In theory, this
quantization bias can generate a significant bias in the orientation of short measured
lines. However, we will deal with this error later.
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The standard deviation on fig. 6a can be described as

σr = k1 cos
(

(r′ −Q(r′))
2π

qr

)
+ k2 (21)

wherek1 = 0.26 cm andk2 = 2.25 cm.
Using our laser calibration tool, we measured the dependence of bias and standard

deviation of the Sick PLS output on distance. In our experiment the laser calibration
tools longitudinal axis was aligned with a laser beam. The target plane was moved by
20 cm further away from the laser in 2.5 mm steps. After each step, the plane stayed
in position for 10 minutes to enable the collection of 3000 sample points. The PLS
was used in 361 point mode, and the on board averaging of measurements was turned
off. Because the precise distance of the Sick PLS and the laser calibration tool was
unknown, the change of bias was being measured instead of the absolute value.

The result of the experiment is depicted on fig. 6b. The standard deviation is a
periodic function with a period of the quantization step. In half of the period the stan-
dard deviation look like a sinusoid, which peaks at 2.5 cm. For the rest of the time it
resembles a V shape.

The change in the bias, can be approximated with a linear function of distance with
a slope of0.5/18 ≈ 0.03. It is likely that just as in fig. 6a the bias has a periodic
component, however it is hard to detect due to noise. It is unlikely that the rise of the
bias was caused by a change in the temperature, since the PLS was allowed a 3 hour
warm-up time prior the commencement of the experiment. Furthermore the range of a
non moving point was also recorded during the experiment, and only about 1 mm drift
was observed.

Our hypothetical explanation for the rise in the bias is the following: because the
PLS uses laser as a light source, the illumination of the target surface doesn’t depend
on range (disregarding the divergence of the laser beam, and the attenuation of the air).
However, if we assume a lambertian distribution of the reflected light, then the amount
of reflected light reaching the photo receiver decreases with increasing range. Less
light causes a slower rise time of the output signal of the photo receiver, which causes
the object to appear further back. It is possible that the bias appears as linear only
because the measurement interval was too short. We assume that the error gets reset
by the compensation mechanism of the laser. The effect of the error on the precision
of measured line parameters will be discussed later.

To find out the uncertainty of measured lines parameters due to random errors,
we approximated the standard deviation of range measurements as constants, with the
value ofσr = 2.4 cm. We did this for two reasons: firstly the variation in the standard
deviation is not big compared to its mean (see fig. 6a). Secondly, if we take only one
scan of a plane, we can not know which measurement has what standard deviation,
therefore we assume the worst case.

We modeled the measurement covariance matrix as diagonal, because one range
measurement is assumed to be uncorrelated with the value of other range measure-
ments. Therefore we can use eq. 16 to determine the covariance of estimated line pa-
rameters. To show, that diagonal approximation of the measurement covariance matrix
is not unrealistic, we have depicted on fig. 7 the covariance and correlation coefficient
matrices for the first couple of points of lines 1 and 13 of figure 9. More details one the
lines can be read in the next paragraph. The matrices can be viewed in their usual form
in appendix B.1.

To justify our random error model, we conducted an experiment, where the robot
was moving on an imaginary quarter circle ofR = 2 m radius around our right angle
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(a) (b)

(c) (d)

Figure 7: Covariance matrix a) and correlation coefficient matrix b) of the range read-
ings for line 1, respectively for line 13 (c and d). Darker color means lower value.
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Figure 8: Parameters of lines taking part of the random noise model evaluation.R =
2 m, ∆θ = 10◦.

calibration tool. In each∆θ = 10◦ the robot stopped and turned toward the right
angle to collect about 3000 scans. Using eq. 12-15 lines were fitted to the arms of
the tool from each scan. Data from 20 lines were collected, whose parameters are
depicted on fig. 8 in the line parameter space. Each line has also a number assigned
to it for identification purposes. Then covariance for each set of line parameters was
calculated using eq. 16. The results are shown on fig. 9, where the measured and
estimated covariance matrices are represented as error ellipses. The probability of a
point falling inside an ellipse is about 40%.

The previous experiment was repeated with the robot moving on a circle of R=1.5 m
radius and stopping each∆θ = 5◦.

The error models are good enough most of the time, however in the case of line
1,2,19 of the first experiment, the measured covariances are slightly bigger than the
predicted. The reason for this deviation is unknown. We suspect that our assumption
of uncorrelated errors is violated since as it can be seen on fig. 9 the points of line 1,2
and 19 span through too few quantization levels. Therefore the information content
of the measured points is smaller than modeled which results in optimistic covariance
estimates. For lines 10, 20 the error ellipses are missing, because while being processed
together, line 10 didn’t have a sufficient number of points. On fig. 9 samples of points
constituting the lines are shown.

The results of the second experiment (fig. 11 and fig. 12) are equally good as that of
the first one except for those few cases where the measured line segment was pointing
into the laser. For line number 18, the line was so well aligned with the laser, that
only very few points represented the line segment, which resulted in a big difference
between the measured and the predicted covariance matrix.

Remark

Figure fig. 10 and fig. 12 show error ellipses not just due to noisy laser output, but also
due to errors in the extraction of the 2 arms of the right angle tool from the laser scans.
Failing to identify the correct corner point in the data can lead to big errors especially,
when one of the lines consists of only a few points. A presumably often used method
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Figure 9: Raw data in Cartesian coordinate system to which lines were fitted. A “+”
sign denotes the position of the laser.R = 2 m, ∆θ = 10◦.
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Figure 10: Error ellipses of the measured (solid line) and estimated (dotted line) line
parameter covariances plotted in line parameter space. Horizontal axis: angles, vertical
axis: distances.R = 2 m, ∆θ = 10◦.
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Figure 11: Raw data in Cartesian coordinate system to which lines were fitted. A “+”
sign denotes the position of the laser.R = 1.5 m, ∆θ = 5◦.
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Figure 12: Error ellipses of the measured (solid line) and estimated (dotted line) line
parameter covariances plotted in line parameter space. Horizontal axis: angles, vertical
axis: distances.R = 1.5 m, ∆θ = 5◦.
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Figure 13: Change in filtered range readings during warm-up.

for corner point detection consists of finding the furthest point from a line defined by
the two non-touching endpoints of the lines (see [5]). Due to the noisy nature of the
laser output, this method often misses the right corner point. This problem can be
solved by sacrificing some computing power. We have refined our choice of corner
point by finding that point in the neighborhood of the initial corner point, which gives
the minimum sum of error variances of both lines. Under error variance of a line we
mean the variance of perpendicular distances of points from the line. The calculation
of variances was performed by calculating the eigenvalues of the covariance matrix
of the x and y coordinates of points, and choosing the smaller eigenvalue. Since the
eigenvector of the largest eigenvalue points to the direction of the largest variance,
therefore the eigenvalue associated with the other eigenvector which orthogonal to the
first one represents the variance of points in the direction perpendicular to the line (see
PCA).

2.5 Identical Bias in the Range Measurements

Bias of the same size in each range measurement of a scan appears as a curvature in a
line which normally would look straight in a Cartesian coordinate system. Positive bias
deforms lines to appear concave, and negative bias deforms lines to appear as convex.

As mentioned in subsection 2.4 there are instantaneous changes in bias of 1 cm
amplitude in the range readings (see fig. 5). There can be different biases for different
colors just as shown for LMS in [18]. Moreover bias in the range changes as the
instrument heats up, just as reported in [18] for the SICK LMS sensor.

We have conducted a similar experiment to the one found in [18] with our PLS
sensor, where we let the PLS measure a point on a wall for over 4 hours. We have
observed a 3 cm drift in the readings (see fig. 13). In order to make the change in the
measured range clearly visible, we filtered the raw readings with the following filter:
output(i) = 0.995output(i − 1) + 0.005input(i), which is in our case equivalent to
a first order linear filter with 40 s time constant. However, to be able to initialize the
filter correctly, we applied the filter from the back to the front (eg. last value first, first
value last).

In order to derive a formula which approximates the relation between bias in the
range measurements and error in the angle and distance parameter of the measured line,
we introduce the following assumptions:
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• The measured line is horizontal, e.g.α = π
2 . We will show later, that this

assumption has no effect on the result.

• If we do the analysis for a dataset containing no error except bias(rb) in the
range measurement, then the results will be valid for datasets containing random
errors and quantized data as well.

If α = π/2 then eq. 2 becomes

r =
d

sinφ
(22)

and measured points in(X, Y ) coordinate system become:

xi = x′i + xei = r′i cos φi + rb cos φi = d′ cot φi + rb cos φi (23)

yi = y′i + yei = r′i sinφi + rb sinφi = d′ + rb sinφi (24)

wherex′i, y′i are the true coordinates of a point on the line,xei, yei are errors due to
bias,rb is the bias in the range,d′ is the true distance of the line from the origin (what
we assume to know) andr′i is the true range. In equation 23-24r′ was replaced byr
from eq. 22.
The error in the slopek was calculated by substituting eq. 23-24 into 4:

ke = k − k
′ = k − 0 =

=
n
∑

x′iy′i −
∑

x′i
∑

y′i + rbd′
(
n
∑

cos φi −
∑

cot φi
∑

sin φi
)
+ r2

b

(
n
∑

cos φi sin φi −
∑

cos φi
∑

sin φi
)

n
∑

x′2
i

−
(∑

x′
i

)2
+ 2d′rb

(
n
∑ cos2 φi

sin φi
−
∑

cot φi
∑

cos φi

)
+ r2

b

(
n
∑

cos2 φi −
(∑

cos φi
)2)

Because the line would be horizontal without bias, the sum of the terms containing
x′i, y

′
i in the nominator is 0. We found, that the coefficients atr2

b are much smaller that
those atrb, therefore they are neglected. After removing the small terms,ke looks like:

ke ≈
d′rb [n

∑
cos φi −

∑
cot φi

∑
sinφi]

n
∑

x
′2
i − (

∑
x′i)

2 + 2d′rb

[
n
∑ cos2 φi

sin φi
−
∑

cot φi

∑
cos φi

] (25)

To removerb from the denominator, we will linearize eq. 25 aroundrb = 0 according
to the following pattern:

ke =
Arb

B + Crb
=⇒ ke ≈

[
∂

∂rb

Arb

B + Crb

]
rb=0

rb =

=
[

AB

(B + Crb)2

]
rb=0

rb =
AB

B2
rb =

A

B
rb (26)

The result after the linearization is:

ke ≈
d′ (n

∑
cos φi −

∑
cot φi

∑
sinφi)

n
∑

x
′2
i − (

∑
x′i)

2 rb (27)

Instead ofx′i it is possible to substitute:

x′i = r′i cos φi =
d′

sinφi
cos φi = d′ cot φi (28)
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after that we get:

ke ≈
rb

d′
n
∑

cos φi −
∑

cot φi

∑
sinφi

n
∑

cot2 φi − (
∑

cot φi)
2 (29)

At the derivation of the error in the y-interceptqe, we used eq. 5 to get:

qe = q − q′ =
1
n

[∑
yi − ke

∑
xi

]
− 1

n

[∑
y′i − k′

∑
x′i

]
(30)

Because our line is horizontal (k′ = 0), therefore the term containingk′ can be removed
from eq. 30. Furthermore we have substituted eq. 23-24 intoyi andxi to get:

qe =
1
n

(∑
d′ + rb

∑
sinφi − ke

∑
[d′ cot φi + rb cos φi]−

∑
d′
)

=

=
rb

n

(∑
sinφi − ke

∑
cos φi

)
− d′ke

n

∑
cot φi (31)

Our initial aim was to find out the error in the angleαe and in the distancede. It is easy
to show forke << 1, using a simplified version of eq. 6-7:

α = arccos
−k√
1 + k2

(32)

d =
q√

1 + k2
(33)

thatαe ≈ ke andde ≈ qe:

αe ≈
[

∂

∂k
arccos

−k√
1 + k2

]
k=0

ke =

=

 −1√
1−

(
−k√
1+k2

)2

(
− 1√

1 + k2
+

k2√
(1 + k2)3

)
k=0

ke = ke (34)

de ≈
[
∂d

∂q

]
k = 0
q = 0

qe +
[
∂d

∂k

]
k = 0
q = 0

ke =

=
[

1√
1 + k2

]
k = 0
q = 0

qe −

[
qk√

(1 + k2)3

]
k = 0
q = 0

ke = qe (35)

One might would want to treatrb as a random variable because it probably changes
with temperature, it also changes impulsively, and the exact value ofrb is unknown.
Therefore we will show here how to derive a covariance estimate of the angle and
distance error ifrb is a random variable with zero mean. For the sake of simplicity, lets
introduce the following substitution:

ke = Arb (36)

qe = Brb − Crbke − keD

= Brb −ACr2
b −ADrb (37)
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whereA = 1
d

n
∑

cos φi−
∑

cot φi

∑
sin φi

n
∑

cot2 φi−(
∑

cot φi)
2 , B = 1

n

∑
sinφi, C = 1

n

∑
cos φi and

D = 1
n

∑
cot φi. Prior calculating the covariance matrix, we calculate the expecta-

tions forke andqe:

k̄e = E(ke) = E(Arb) = AE(rb) = Ar̄b = 0 (38)

q̄e = E(qe) = E(Brb −ACr2
b −ADrb) =

= (B −AD)E(rb)−ACE(r2
b ) = 0−ACσ2

rb
≈ 0 (39)

In eq. 39 we made a simplifying assumption ofACr2
b and therefore ofACσ2

rb
being so

small that it can be approximated with 0. Then the elements of the covariance matrix
were calculated as following:

σ2
ke

= E(k2
e)− (E(ke))2 = E(A2r2

b ) = A2σ2
rb

(40)

σ2
qe

= E(q2
e)− (E(qe))2 = E((B −AD)2r2

b ) = (B −AD)2σ2
rb

(41)

σkeqe
= E

[
(ke − k̄e)(qe − q̄e)

]
=

= E(keqe) = E(Arb(B −AD)rb) = A(B −AD)σ2
rb

(42)

Then the resulting covariance matrix due to bias changing randomly will be:

Cb = cov(ke, qe) = cov(αe, de) =
[

A2 (B −AD)A
(B −AD)A (B −AD)2

]
σ2

rb
(43)

At the beginning of this section, we have assumed that our line is horizontal. How-
ever, if we want to use eq. 29,31 and 43, all we have to do is to calculate A,B,C,D with
angles normalized using:

φi = φim − α +
π

2
(44)

whereα is the estimated angle of the line andφim are the measured bearings. Nor-
malization has no effect on the error estimates(∆α, ∆d), because this corresponds to
a shift only in a polar coordinate system.

The computational burden at the calculation of the angle and distance error can be
reduced if all sums in eq. (29, 31) are replaced with integrals, like:

n∑
i=1

sinφi ≈
n

∆φ

∫ φn

φ1

sinφdφ (45)

where∆φ = φn − φ1. The error committed due to this approximation will be small
due to the small angle resolution (qφ = 0.5◦) of the laser. We substituted the following
approximations: ∑

cos φi ≈
n

∆φ
(sinφn − sinφ1) (46)∑

sinφi ≈
n

∆φ
(cos φ1 − cos φn) (47)∑

cot φi ≈
n

∆φ
(ln |φn| − ln |φ1|) =

n

∆φ
ln
∣∣∣∣ sinφn

sinφ1

∣∣∣∣ (48)∑
cot2 φi ≈=

n

∆φ
[φ1 + cot φ1 − φn − cot φn] =

cot φ1 − cot φn

∆φ
n− n (49)

20

MECSE-26-2003: "Uncertainty of Line Segments Extracted from Static SICK PLS ...", A. Diosi and L. Kleeman



−100 −75 −50 −25 0 25 50 75 100
0

1

2

3

4

5

6

target plane angle [deg]

 ra
ng

e 
di

ffe
re

nc
e 

[c
m

]
measured
predicted

−100 −75 −50 −25 0 25 50 75 100

0

2

4

6

target plane angle [deg]

ra
ng

e 
di

ffe
re

nc
e 

[c
m

]

measured
predicted

(a) (b)

Figure 14: Measured range change depending on target plane angle

into eq. 29 and 31 to derive the following closed form solutions for the error in angle
and distance:

αe ≈ ke = −rb

d′

∆φ (sinφn − sinφ1) + ln
∣∣∣ sin φn

sin φ1

∣∣∣ (cos φn − cos φ1)

∆φ2 + ∆φ (cot φn − cot φ1) + ln2
∣∣∣ sin φn

sin φ1

∣∣∣ (50)

de ≈ qe =
rb

∆φ

(
cos φ1 − cos φn − ke(sinφn − sinφ1)−

d′ke

rb
ln
∣∣∣∣ sinφn

sinφ1

∣∣∣∣) (51)

2.6 Error Changing with Incidence Angle

In paper [18] the authors measured the error in the range measurements of the LMS
laser scanner. They found that the error in the range depends on the incidence angle
of the beam and the plane. However, they provided no explanation for the source of
this error, or any quantitative approximation of the error. We have conducted similar,
but more elaborated experiments with our PLS. Our method for measuring the error
change with incidence angle was the following:
We have aligned our laser calibration tool’s longitudinal axis parallel with a line run-
ning on the floor. We have also made sure that the axis of rotation of the target plane
was above the line. Then we have attempted to move our differential drive robot, so that
the odometry center would be above the line. By observing the lasers output we tuned
the robots position so that the target plane would appear as an odd number of points,
with the center points having a bearing of90◦. This way we could make sure, that there
is a laser spot close to the center of rotation, and that the angle between our laser beam
of interest and the target plane is about90◦ ± 2◦. In our next step we collected range
readings, while moving the target plane from0◦ (at this orientation the angle between
plane and beam is90◦) to +50◦ and to−50◦. If there was a difference between the
average of range readings taken at+50◦ and−50◦ then we moved the laser calibration
tool slightly to the left or right, depending on the sign of the difference. The amount
of movement depended on the magnitude of the difference. We repeated this process
iteratively until the ranges measured at+50◦ and−50◦ were equal.

After making sure that the center of our laser beam of interest coincides with the
center of rotation, we started our experiment. In the experiments we have rotated the
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target plane from+70◦ to−70◦ by 1.8◦ steps each 10 min. To avoid bias from quanti-
zation to influence our measurements, we repeated the measurements after moving the
target plane away from the laser by half the quantization step, eg. by 2.5 cm. In the
next step we computed the average range for each angle. To allow bias due to quan-
tization to be cancelled, the average of the averages for the same angles, but different
distances were calculated. Then from all the obtained results, the range value for0◦

was subtracted.
Two examples of the results are shown in fig. 14, whereas the approximated (“pre-

dicted”) error was calculated aser = 2| tanβ|, whereβ is the angle of the target plane.
In fig. 14 a) the measured error is close to the approximated, however in fig. 14b it
seems as if at angle±50◦, 2.5 cm was subtracted from the readings. A possible expla-
nation for that is the following: as the target plane was rotated, less and less light came
back to the laser scanner, causing longer and longer rise times of the output signal of
the photo detector. We suspect, that at±50◦ the signal level got into a different band
(see section 2.1), and the laser used different compensation values. In our experiments
the jump in the range readings occurred at different angles for different laser to target
plane distances. Also note that theer = 2| tanβ| approximation was tested only with
our target plane, which was coated with a non-glossy white paper, probably giving a
good Lambertian reflection. It is possible that surfaces with more specularity would
give different error characteristics.

2.6.1 Error Calculation

To approximate the bias in the estimated line parameters due to range errors changing
with incidence angle, we would need to know where the range compensation jumps
occur. Unfortunately, we don’t have this information, therefore we will assume that by
treating the errors as if there were no jumps (like fig. 14a), the results will represent the
biggest possible error.

When estimating the bias error in the line parameter estimates, we first normalize
the bearings of the line of interest:

φi = φim − α̂ +
π

2
(52)

to get a line parallel with the x axis. In eq. 52̂α is the estimated line angle andφim are
the bearing of the laser range measurements. Then we calculate ranges which would
have been measured by a perfect sensor of a line with the estimated parameters(α̂, d̂) :

ri =
d̂

cos(α̂− φim)
=

d̂

sin(φi)
(53)

From experimental data (see fig. 14) the error for each range measurement is modelled
as:

eri = w |tanβi| = w
∣∣∣tan

(π

2
− φi

)∣∣∣ = w |cot φi| (54)

where we exploited that for horizontal linesβi = π/2 − φi (see fig. 15). In our case
parameterw has a value of 2 cm. As the next step we convert our range measurements
into (X, Y ) coordinate system using:

xi = (ri + eri) cos φi (55)

yi = (ri + eri) sinφi (56)
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Figure 15: The relation ofφ andβ for horizontal lines.

Finally all we have to do is to fit a line to(xi, yi) using linear regression (eq. 4-5),
convert the resulting parameters into normal form(α, d) by the application of eq. 6-7,
and calculate the errors as:

∆α = α− π

2
(57)

∆d = d− d̂ (58)

For the derivation of a closed form solution, we have chosen a different approach.

2.6.2 Closed Form Error Calculation

Due the complexity of the problem, we shall linearize eq. 2 about the coordinates of the
true line(α0, d0). Just as in subsection 2.5, we assume, that our true line is horizontal
(α0 = π/2). Therefore after substitutingα0 = π/2 into eq. 8 we get:

ξi = ri − r0i ≈
∆d

sinφi
+

d0 cos φi

sin2 φi

∆α = ai∆d + bi∆α (59)

whereai = 1
sin φi

andbi = d0 cos φi

sin2 φi
.

We can calculate (∆α, ∆d) which minimizes the sum:
∑

ξ2
i , the following way (see

appendix A.4):

∆α =
∑

ξmiai

∑
aibi −

∑
ξmibi

∑
a2

i

(
∑

biai)
2 −

∑
b2
i

∑
a2

i

(60)

∆d =
∑

ξmibi

∑
aibi −

∑
ξmiai

∑
b2
i

(
∑

biai)
2 −

∑
b2
i

∑
a2

i

(61)

Whereξmi is the range error changing with the incidence angle, and it is calculated as:

ξmi = rmi − r0i = w| tanβi| = w| tan
(π

2
− φi

)
| = w| cot φi| = wsi cot φi (62)

Wheresi = sign (cot φi).
If we substitute eq. 22 and 62 into eq. 60-61, we get:

numerator(∆α) =
∑

ξmiai

∑
aibi −

∑
ξmibi

∑
a2

i =
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=
∑

wsi cot φi
1

sinφi

∑
d0

cos φi

sin3 φi

−
∑

wsi cot φid0
cos φi

sin2 φi

∑ 1
sin2 φi

=

= wd0

(∑
si

cos φi

sin2 φi

∑ cos φi

sin3 φi

−
∑

si
cos2 φi

sin3 φi

∑ 1
sin2 φi

)
(63)

denominator(∆α, ∆d) = d2
0

[(∑ cot φi

sin2 φi

)2

−
∑ cot2 φi

sin2 φi

∑ 1
sin2 φi

]
(64)

numerator(∆d) =
∑

ξmibi

∑
aibi −

∑
ξmiai

∑
b2
i =

=
∑

wsi cot φid0
cos φ1

sin2 φi

∑
d0

cos φi

sin3 φi

−
∑

wsi cot φid0
1

sinφi

∑
d2
0

cos2 φi

sin4 φi

= wd2
0

(∑
si

cos2 φi

sin3 φi

∑ cos φi

sin3 φi

−
∑

si
cos φi

sin2 φi

∑ cos2 φi

sin4 φi

)
(65)

To get a closed form solution, we use the following approximations, whereas the solu-
tions for the integrals were taken from [7]:

∑ 1
sin2 φi

≈ n

∆φ

∫ φn

φ1

1
sin2 φi

=
n

∆φ
(− cot φn + cot φ1) (66)

∑ cos φi

sin2 φi

≈ n

∆φ

∫ φn

φ1

cos φi

sin2 φi

=
n

∆φ

(
− 1

sinφn
+

1
sinφ1

)
(67)

∑ cos φi

sin3 φi

≈ n

∆φ

∫ φn

φ1

cos φi

sin3 φi

=
n

∆φ

(
− 1

2 sin2 φn

+
1

2 sin2 φ1

)
(68)

∑ cos2 φi

sin4 φi

≈ n

∆φ

∫ φn

φ1

cos2 φi

sin4 φi

=
n

∆φ

(
−1

3
cot3 φn +

1
3

cot3 φ1

)
(69)

∑ cos2 φi

sin3 φi

≈ n

∆φ

∫ φn

φ1

cos2 φi

sin3 φi

=

=
n

∆φ

(
cos φ1

2 sin2 φ1

− cos φn

2 sin2 φn

+
1
2

ln
∣∣∣∣tan

φ1

2

∣∣∣∣− 1
2

ln
∣∣∣∣tan

φn

2

∣∣∣∣) (70)

However as we can see,si was left out from eq. 67,70. Becausesi = | cot φi|,
si = 1 for φ ∈ (0, π/2) andsi = −1 for φ ∈ (π/2, π). This means that in case of
φ1, φn ≤ π/2 or φ1, φn ≥ π/2 we can movesi = s in front of the sums:

∑
si

cos2 φi

sin3 φi

≈ sn

∆φ

(
cos φi

2 sin2 φi

+
cos φn

2 sin2 φn

+
1
2

ln
∣∣∣∣tan

φ1

2
tan

φn

2

∣∣∣∣) (71)∑
si

cos φi

sin2 φi

≈ sn

∆φ

(
1

sinφ1
− 1

sinφn

)
(72)

In case wereφ1 ≤ π/2 ≤ φn, the integrals in eq. 67,70 have to be broken down into
two parts such as an integral fromφ1 to π/2 with si = s = 1 and an integral fromπ/2
to φn with si = s = −1:

∑
si

cos2 φi

sin3 φi

≈=
n

∆φ

[∫ π
2

φ1

cos2 φ

sin3 φ
dφ−

∫ φn

π
2

cos2 φ

sin3 φ
dφ

]
=

=
n

∆φ

(
cos φ1

2 sin2 φ1

+
cos φn

2 sin2 φn

+
1
2

ln
∣∣∣∣tan

φ1

2
tan

φn

2

∣∣∣∣) (73)
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∑
si

cos φi

sin2 φi

≈ n

∆φ

∫ φn

φ1

cos φi

sin2 φi

dφ =

=
n

∆φ

[∫ π
2

φ1

cos φ

sin2 φ
dφ−

∫ φn

π
2

cos φ

sin2 φ
dφ

]
=

=
n

∆φ

[
− 1

sin π
2

+
1

sinφ1
+

1
sinφn

− 1
sin π

2

]
=

=
n

∆φ

[
−2 +

1
sinφ1

+
1

sinφn

]
(74)

Eq. 71 with eq. 73 and eq. 72 with eq. 74 can be merged together the following way:∑
si

cos2 φi

sin3 φi

≈ ns

∆φ
F =

=
ns

∆φ

(
cos φ1

2 sin2 φ1

+ t
cos φn

2 sin2 φn

+
1
2

ln
∣∣∣∣tan

φ1

2

∣∣∣∣+ t

2
ln
∣∣∣∣tan

φn

2

∣∣∣∣) (75)∑
si

cos φi

sin2 φi

≈ ns

∆φ

(
−(t + 1) +

1
sinφ1

+
t

sinφn

)
=

nsE

∆φ
(76)

where

• s = 1, t = 1 for φ1 ≤ π/2 ≤ φn.

• s = 1, t = −1 for φ1, φn ≤ π/2.

• s = −1, t = −1 for φ1, φn ≥ π/2.

Thus the closed form solution for the line parameter error generated by range error
changing with the incidence angle:

∆α =
ws

d

EA− FC

A2 − 1
3 (cot3 φ1 − cot3 φn)C

(77)

∆d = ws
FA− ED

A2 − 1
3 (cot3 φ1 − cot3 φn)C

(78)

where

A =
1
2

(
1

sin2 φ1

− 1
sin2 φn

)
(79)

C = cotφ1 − cot φn (80)

D =
1
3
(
cot3 φ1 − cot3 φn

)
(81)

E = −(t + 1) +
1

sinφ1
+

t

sinφn
(82)

F =
cos φ1

2 sin2 φ1

+ t
cos φn

2 sin2 φn

+
1
2

ln | tan
φ1

2
|+ t

2
ln | tan

φn

2
| (83)

2.7 Error Due to Bias Growing with Distance

As it can be seen on fig. 6a, there is a bias in the range measurement, which grows with
distance. However, we can assume, that this bias gets periodically reset by the PLS as
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the signal amplitude on the output of the photo receiver gets into a different band (see
sec. 2.1).

In our simplistic approximation of the error caused by this bias, we assumed, that
the range error which is added to the true ranges grows linearly from 0 for the shortest
range, up to the maximum value (but no more thanmax err) for the longest range.
The rate of growth is eithervr = 0.5/18 ≈ 0.03 or a smaller number which results in a
maximum error ofmax err. We followed the same path in the calculations as in 2.6.1,
except for the calculation oferi which was performed in the following way:

rmax = max(r)
rmin = min(r)

∆r = min((rmax − rmin)vr,max err)

rei = (ri − rmin)
∆r

rmax − rmin
= (ri − rmin)k (84)

For the choice ofmax err values between 5 and 13 seem to be reasonable.
To get formulas, which can be possibly converted into a closed form solution, eq. 22

was substituted into eq. 84 and the result was substituted into eq. 60-61:

numerator(∆α) =
∑

ξmiai

∑
aibi −

∑
ξmibi

∑
a2

i =

=
∑

rei
1

sinφi

∑
d0

cos φi

sin3 φi

−
∑

reid0
cos φi

sin2 φi

∑ 1
sin2 φi

=

=
∑

d0k

(
1

sin(φi)
− 1

sinφmin

)
1

sinφi

∑
d0

cos φi

sin3 φi

−

−
∑

d0k

(
1

sin(φi)
− 1

sinφmin

)
d0

cos φi

sin2 φi

∑ 1
sin2 φi

=

=
d2
0k

sinφmin

(∑ 1
sin2 φ

∑ cos φi

sin2 φi

−
∑ 1

sinφ

∑ cos φi

sin3 φi

)
(85)

numerator(∆d) =
∑

ξmibi

∑
aibi −

∑
ξmiai

∑
b2
i =

=
∑

rei
d0 cos φi

sin2 φi

∑
d0

cos φi

sin3 φi

−
∑

rei
1

sinφi

∑ d2
0 cos2 φi

sin4 φi

=

= d3
0k

(∑(
1

sin(φi)
− 1

sinφmin

)
cos φi

sin2 φi

∑ cos φi

sin3 φi

)
−

−d3
0k

(∑(
1

sin(φi)
− 1

sinφmin

)
1

sinφi

∑ cos2 φi

sin4 φi

)
= d3

0k

(∑ cos φi

sin3 φi

− 1
sinφmin

∑ cos φi

sin2 φi

)∑ cos φi

sin3 φi

−d3
0k

(∑ 1
sin2 φi

− 1
sinφmin

∑ 1
sinφi

)∑ cos2 φi

sin4 φi

(86)

denominator(∆α, ∆d) = d2
0

[(∑ cot φi

sin2 φi

)2

−
∑ cot2 φi

sin2 φi

∑ 1
sin2 φi

]
(87)

Then we used the following approximations, whereas the solutions for the integrals
were taken from [7]: ∑ 1

sinφi
≈ n

∆φ

∫ φn

φ1

1
sinφi

=
n

∆φ
ln

∣∣∣∣∣ tan φn

2

tan φ1
2

∣∣∣∣∣ (88)
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∑ 1
sin2 φi

≈ n

∆φ

∫ φn

φ1

1
sin2 φi

=
n

∆φ
(− cot φn + cot φ1) (89)

∑ cos φi

sin2 φi

≈ n

∆φ

∫ φn

φ1

cos φi

sin2 φi

=
n

∆φ

(
− 1

sinφn
+

1
sinφ1

)
(90)

∑ cos φi

sin3 φi

≈ n

∆φ

∫ φn

φ1

cos φi

sin3 φi

=
n

∆φ

(
− 1

2 sin2 φn

+
1

2 sin2 φ1

)
(91)

∑ cos2 φi

sin4 φi

≈ n

∆φ

∫ φn

φ1

cos2 φi

sin4 φi

=
n

∆φ

(
−1

3
cot3 φn +

1
3

cot3 φ1

)
(92)

(93)

The resulting closed form solutions are:

∆α =
k

sin φmin

B(cot φ1 − cot φn)− A ln

∣∣∣∣∣ tan φn
2

tan
φ1
2

∣∣∣∣∣
A2 − 1

3 (cot3 φ1 − cot3 φn) (cot φ1 − cot φn)
(94)

∆d = d0k

A
(

A− B
sin φmin

)
− 1

3

cot φ1 − cot φn −
ln

∣∣∣∣∣∣ tan
φn
2

tan
φ1
2

∣∣∣∣∣∣
sin φmin

 (cot3 φ1 − cot3 φn)

A2 − 1
3 (cot3 φ1 − cot3 φn) (cot φ1 − cot φn)

(95)

whereφmin is the bearing corresponding tormin and

A =
1

2 sin2 φ1

− 1
2 sin2 φn

(96)

B =
1

sinφ1
− 1

sinφn
(97)

2.8 Error Due to Quantization Bias

As it was shown in sec. 2.4 using simulations, the truncating quantizer introduces a
bias which can be described by:

rqb = b sin((r′ −Q(r′))
2π

qr
)− qr

2
(98)

This quantization bias superimposed on the true range can cause a systematic error in
the estimated line parameters. Unfortunately the true ranger′ is unknown, therefore
the precise calculation of the angle and distance error of a line is probably not possible.
However, it is possible to find a rough approximate for the maximum error. Lets assume
the following:

• The qr

2 error term in eq. 98 is taken care of by the manufacturer, or its contribu-
tion to the overall error is modeled as constant bias (see sec. 2.5).

• Our line parameters are reasonably accurate, therefore our estimate ofr′ differs
from r′ only by a constant, which causes a phase shift in the range bias.

• The line in question is normalized.

Then we can approximate the maximum errors by varying the superimposed sinusoids
phase and finding the maximum error. Note that by varying the phase of the sinusoid,
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the nonlinearity in eq. 98 represented by the quantizerQ(r′) doesn’t stop us from
deploying standard analysis tools to find the maximum error.

Lets rewrite eq. 98 so that it contains a phase shiftε:

rqb = b sin
(

(r′ −Q(r′))
2π

qr

)
≈ b sin

(
(r −Q(r))

2π

qr
+ ε

)
= b sin(δ + ε) (99)

wherer is calculated using the estimated line parameters.
To find out the error in orientation caused by the quantization bias,rqb of eq. 99 is
substituted intoξmi of eq. 60:

∆α =
∑

ξmiai

∑
aibi −

∑
ξmibi

∑
a2

i

(
∑

biai)
2 −

∑
b2
i

∑
a2

i

= (100)

=
1
M

(∑
rqbiai

∑
aibi −

∑
rqbibi

∑
a2

i

)
= (101)

=
1
M

(∑
rqbiaiC1 −

∑
rqbibiC2

)
= (102)

=
b

M

(
C1

∑
sin(δi + ε)ai − C2

∑
sin(δi + ε)bi

)
(103)

To find out where∆α peaks we differentiate∆α by ε and find where does it equal to
zero:

∂∆α

∂ε
=

b

M

(
C1

∑
cos(δi + ε)ai − C2

∑
cos(δi + ε)bi

)
= 0 (104)

Under the conditions thatb 6= 0 andM 9 ∞, eq. 104 is equivalent to

0 = C1

∑
cos(δi + ε)ai − C2

∑
cos(δi + ε)bi =

= cos ε
(
C1

∑
ai cos δi − C2

∑
bi cos δi

)
−

− sin ε
(
C1

∑
ai sin δi − C2

∑
bi sin δi

)
= 0 (105)

From eq. 105,ε corresponding to an extreme of∆α can be found as:

εmα = arctan
C1

∑
ai cos δi − C2

∑
bi cos δi

C1

∑
ai sin δi − C2

∑
bi sin δi

(106)

To find an extreme of∆d, the above mentioned process has to be repeated, with the
difference that eq. 61 has to be differentiated with respect toε.

∆d is expressed as:

∆d =
∑

rqbibi

∑
aibi −

∑
rqbiai

∑
b2
i

(
∑

biai)
2 −

∑
b2
i

∑
a2

i

=

=
∑

rqbibiC1 −
∑

rqbiaiC3

M
(107)

To make the differentiation of∆d easier, we first differentiaterqbi:

∂rqbi

∂ε
= b cos(δi + ε) = b (cos δi cos ε− sin δi sin ε) (108)

28

MECSE-26-2003: "Uncertainty of Line Segments Extracted from Static SICK PLS ...", A. Diosi and L. Kleeman



The differential of∆d is the combination of eq. 107 and 108:

∂∆d

∂ε
=

b

M
C1

∑
(cos δi cos ε− sin δi sin ε) bi −

b

M
C3

∑
(cos δi cos ε− sin δi sin ε) ai (109)

The maximum distance error can be obtained by solving∂∆d
∂ε = 0, which is equivalent

to:

cos ε
(
C1

∑
bi cos δi − C3

∑
ai cos δi

)
−

− sin ε
(
C1

∑
bi sin δi − C3

∑
ai sin δi

)
= 0 (110)

From whereε generating the maximal distance error:

εmd = arctan
C1

∑
bi cos δi − C3

∑
ai cos δi

C1

∑
bi sin δi − C3

∑
ai sin δi

(111)

where

C1 =
∑

aibi, C2 =
∑

a2
i , C3 =

∑
b2
i , δi = (ri −Q(ri)

2π

qr
(112)

2.9 Error Due to Laser Plane Misalignment

The robot which has our PLS laser scanner is mounted on it, is equipped with two
pneumatic tires and two caster wheels, one of which is suspended on springs. The
laser plane orientation depends on the tire pressures and on the orientation of the caster
wheels. We found that the laser plane pitch angle changes by0.4◦ just by moving the
caster wheels around. We also found one time that the roll angle was1◦, due to not
equal tire pressures.

In our analysis of the error due to laser plane misalignment, homogenous transfor-
mations (see for example [12]) were used in 3D space. Lets place a world coordinate
system (denoted with subscript “w”) into the center of the odometry of the robot with
the (X,Y) plane parallel with the floor, and Y axis pointing toward the front of the robot.
Lets place a second, robot coordinate system denoted with subscript “r”, into the center
of odometry. We get this new coordinate system by rotating the world coordinate sys-
tem around its X axis by the pitch angleβ, and then rotating the result around its new
Y axis by the roll angleγ. Lets place a new coordinate system for the laser, denoted
by “l”, which has the same orientation as the robot coord. syst. but it is displaced by
the coordinates of the laser(xl, yl, zL, 1)t. Then to find out how a point measured in
the misaligned laser coordinate system would appear in a well aligned laser coordinate
system, we have to multiply the homogeneous coordinates of the measured point with
a transformation matrix which is the product of 4 homogeneous transform matrices:

vwl = T−1Rx(β)Ry(γ)Tvrl =

=


1 0 0 xl

0 1 0 yl

0 0 1 zl

0 0 0 1


−1 

1 0 0 0
0 cosβ −sinβ 0
0 sinβ cosβ 0
0 0 0 1

 .
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.


cosγ 0 −sinγ 0

0 1 0 0
sinγ 0 cosγ 0

0 0 0 1




1 0 0 xl

0 1 0 yl

0 0 1 zl

0 0 0 1




xr

yr

zr

1


Now lets assume that the (X,Y) axes of the laser are aligned with the (X,Y) axes of the
robot coordinate system. Note, that in this configuration the laser is pointing forward.
Lets assume that all walls are perpendicular to the floor. Then an equation of a plane
representing a wall is given by the equation:

ωT
rlvrl =

[
cos α sinα 0 −d

]
vrl = 0 (113)

To find out the difference in the perception of a plane in case of a non zero roll/pitch
angle, we transform the plane parameters (see [12]) expressed in the laser coordinate
system on the robot to the laser coordinate system in the world coordinate system,
which represents the ideal case with zero roll and pitch angles:

ωwl = (T−1Rx(β)Ry(γ)T )T ωrl (114)

To extract the line from the result, we need to calculate the intersection ofωwl with the
(X, Y ) plane, after which we get the equation for the line as:

x cos γ cos α + y (cos β sinα− sin γ sinβ cos α) =
= d− (xl cos γ − yl sin γ sinβ − zl sin γ cos β − xl) cos α−

− (yl cos β − zl sinβ − yl) sinα (115)

The representation of a line in eq. 115 is not in normal form, because the coefficients
at x and y are not normalized. Lets denote the coefficient at x ascx the coefficient at y
ascy and the right side ascd. Then our line in slope-intercept form:

y = −cx

cy
x +

cd

cy
= kx + q (116)

At last (k, q) can be converted into(α′, d′) using eq. 6-7. The a difference betweenα′

andα and betweend′ andd gives the error in the angle and distance parameters of a
line when the laser plane is not parallel with the floor.

After experimenting with parameters of lines, roll,pitch angles and laser positions,
we observed that the effect of laser plane misalignment on the line parameters is in-
significant if the roll and pitch angles are reasonably small, and the laser is placed close
to the center of odometry. To show an example, lets assume that the laser is placed at
(0, 30cm) in the robots coordinate system, and that the wall to be measured can be
described byα = 90◦ andd = 200 cm. This configuration would lead to the following
errors:

• β = γ = 1◦ =⇒ ∆α = −0.0175◦, ∆d = 0.0194cm.

• β = γ = 3◦ =⇒ ∆α = −0.1572◦, ∆d = 0.1745cm.

• β = γ = 5◦ =⇒ ∆α = −0.4369◦, ∆d = 0.4827cm.

• β = γ = 10◦ =⇒ ∆α = −1.7538◦, ∆d = 1.8924cm.
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Figure 16: Robot moving around a perfect corner in our systematic error test.

3 Experimental Testing of the Systematic Error Model

We have performed only indirect tests of the angle systematic error estimate because
precise testing of estimated line parameter precision is quite complicated and/or time
consuming. In our experiments we were using our “perfect” corner tool, whose opening
angle we estimated as89.85◦ ± 0.3◦. In our experiments our robot was moving on a
path resembling an arc around our “perfect” corner tool as can be seen on fig. 16.
On its course the robot stopped each few degrees, turned toward the corner and took
thousands of scans.

Lines were fitted to the arms of the tool in the scans, and the average angle dif-
ference was evaluated for each position. On position we mean the ordinal number of
the place where the robot stopped and turned towards the corner to collect scans. We
assumed that the averages were influenced only by systematic errors, because each av-
erage was calculated from about 3000 samples. The opening angle of the corner was
estimated by calculating the difference of the estimated angles of the corner arms.

When approximating the systematic error in angle estimates, errors due to identical
bias, errors changing with incidence angle, errors due to bias growing with distance
and errors due to quantization bias were considered only. Errors due to laser plane
misalignment were neglected. The systematic error estimates were calculated only
for the first scan taken at each position. In the error calculation, the average angle
and distance parameters were used. The absolute values of the errors from all 4 error
sources for both lines were summed up to create a worst case estimate.

The following parameters were used at the systematic error calculations:

• Identical bias parameter:σrb = 5 cm.

• Incidence angle error parameter:w = 2.

• Error growing with distance parameter:vr = 0.03, max err = 13 cm.

• Quantization bias parameter:b = 0.17 cm.

There were 3 experiments conducted. In the first experiment, the robot was moving
on an arc of radiusR = 1.5 m around the “perfect” corner, and stopped to collect scans
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at eachΘ = 5◦. A sample scan taken at each position is shown on fig. 17. Each sub-
figure of fig. 17 is numbered the same way as the resulting opening angles on fig. 18.
On fig. 18 the estimated error bounds are marked with a “*” and a “+”.

In the second experiment the robot moved on an arc ofR = 2 m radius and took
scans eachΘ = 10◦. The results can be seen on fig. 19-20.

In the third experiment the robot moved on an arc ofR = 3 m radius and took
scans eachΘ = 5◦. The results can be seen on fig. 21-22.

From fig. 18,20, 22 we can see that the measured systematic error reached4◦ in
several cases. It would be good to know if in such cases the systematic or the non-
systematic error is larger. Luckily our first experiments dataset was reused in sec. 2.4
at the random error experiment. Therefore if we want to know how big were the random
errors at position 9 of experiment 1 (the systematic error is almost4◦, see fig. 18), then
all we need to do is to look at sub-figure 9 and 9+18=27 of figure 12. From there
we can see, that the angle standard deviation of both arms is about1◦. Therefore we
can conclude that systematic errors in estimated line parameters can be bigger than the
random ones!

When evaluating our random error models, we need to know that if we would have
a perfect systematic error model, then either the upper, or the lower error mark would
lie on the−90◦ mark of fig. 18,20, and 22. However as we see, the errors are most
of the time bigger. This is normal, because we added up the absolute values of angle
errors from each error source, thus creating a worst case estimate. In reality, these
errors some times cancel out each other.

In our models we didn’t consider the compensation mechanism of the laser either,
which corrects readings by measuring the peak of a returned signal. The reason is that
we don’t have access to any of the internal parameters including the measured signal
strength. Compensation can reduce the line parameter errors, or it can increase them
depending on where it happens.

In some instances our estimated error was smaller than the measured one. It is
more than likely than there are other error sources involved which were not modeled.
One such error source is the error caused by wrong segmentation of the arms of the
right angle calibration tool. Because range measurements are noisy, the determination
of where one arm ends and the second arm starts is hard. Errors in the segmentation
can cause systematic errors in some line parameters because points associated with the
wrong arm can lie in some cased always on one side of the arm.

4 Conclusion and Future Work

In this tech report, the results of our investigations of line segment parameter estimation
from laser range data are summarized. All observations are based upon only one par-
ticular Sick PLS 101-112 laser range finder. An approach for line parameter estimation
was developed in which parameters of a line are estimated directly in the lasers polar
coordinate system, without the conversion of measurements into a Cartesian coordinate
system (except for getting an initial estimate). This line parameter estimation method
allows a satisfactory line parameter uncertainty estimation, which has been verified ex-
perimentally. Our line parameter error models were derived while assuming no errors
in the laser beam bearings.

It has been also found that errors in the estimated line parameters can have a sub-
stantial systematic error component. As we have shown the systematic error can be
even larger than random errors. The sources of these errors have been identified as

32

MECSE-26-2003: "Uncertainty of Line Segments Extracted from Static SICK PLS ...", A. Diosi and L. Kleeman



−100 −50 0
0

50

100 1

−100 −50 0
0

50

100
2

−100 −50 0
0

50

100
3

−100 −50 0
0

50

100
4

−100 −50 0
0

50

5

−100 −50 0
0

50

6

−100 −50 0
0

20
40
60
80 7

−100 −50 0
0

50
8

−100 −50 0
0

50
9

−100 −50 0
0

50
10

−100 −50 0
0

50
11

−100 −50 0
0

50
12

−100 −50 0
0

50
13

−100 −50 0
0

50
14

−100 −50 0
0

50
15

−100 −50 0
0

50
16

−100 −50 0
0

20
40
60 17

Figure 17: Samples of scans of corners in Cartesian coordinate system for the experi-
ment whereR = 1.5m,∆Θ = 5◦. Laser scanner position are depicted as a ’+’.
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Figure 18: Systematic error model test (R = 1.5m,∆Θ = 5◦): measured opening
angle of a right angle corner and error upper and lower bound estimates.
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Figure 19: Samples of scans of corners in Cartesian coordinate system for the experi-
ment whereR = 2m,∆Θ = 10◦. Laser scanner position are depicted as a ’+’.
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Figure 20: Systematic error model test (R = 2m,∆Θ = 10◦): measured opening
angle of a right angle corner and error upper and lower bound estimates.
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Figure 21: Samples of scans of corners in Cartesian coordinate system for the experi-
ment whereR = 3m,∆Θ = 5◦. Laser scanner position are depicted as a ’+’.

0 5 10 15
−96

−95

−94

−93

−92

−91

−90

−89

−88

−87

position

 A
ng

le
 d

iff
er

en
ce

 [d
eg

]

Figure 22: Systematic error model test (R = 3m,∆Θ = 5◦): measured opening angle
of a right angle corner and error upper and lower bound estimates.
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constant bias in the range measurements, bias changing linearly with range, bias de-
pending on incidence angle and bias due to quantization. An attempt has been made
to estimate worst-case systematic errors in line parameters. Experiments using a right
angle corner have shown the model to be reasonably accurate but on rare occasions
under-estimates the angle error. Systematic error estimates were not used for error
compensation since we estimated the upper bound only.

The applicability of our systematic error models is restricted to laser scanners with
a similar principle of operation as the Sick PLS. One example is the laser scanner
described in [14]. Even if the whole systematic error model is not applicable to a
particular laser scanner, parts of it could be used. For example, many lasers have a bias
in their range readings which changes during warm-up.

In the future, we plan to test the new Sick LMS laser scanner. We also plan to work
on the fusion of line parameters obtained from laser and sonar measurements.
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A Derivations of Formulas

A.1 Line in Polar Coordinate System

If we substitute the equations for transformation of a point from polar to Cartesian
frame

x = r cos φ (117)

y = r sinφ (118)

into the normal equation of a line:

x cos(α) + y sin(α) = d (119)

we get
r cos(α) cos(φ) + r sin(α) sin(φ) = d (120)

Which can be simplified to
r cos(α− φ) = d (121)

A.2 Conversion of Lines from Slope-Intercept Form to Normal Form

Line expressed in normal form:

x cos α + y sinα = d (122)

Line expressed in slope-intercept form:

y = kx + q (123)
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Lets rewrite eq. 123 so, that the coefficients at coordinates x,y constitute a unit vector:

−k√
1 + k2

x +
1√

1 + k2
y =

q√
1 + k2

(124)

When comparing eq. 124 and eq. 122, it is clear, that they are equivalent only if:

−k√
1 + k2

= cos α (125)

1√
1 + k2

= sinα (126)

q√
1 + k2

= d (127)

Upon using eq. 126,α would be always bigger then 0 and smaller thanπ/2, because
of the restricted domain of definition of inverse sinus. Therefore eq. 126 was used to
determineα. However, the inverse of cosine returns values in the< 0, π > interval,
andd has to be bigger than 0, therefore the result has to be modified to get:

α = arccos
−k√
1 + k2

+ (sign(q)− 1)
π

2
(128)

d =
|q|√

1 + k2
(129)

A.3 Line Fitting in Cartesian Coordinate System by Minimizing
Perpendicular Distance

In [1] the authors show the solution of the line fitting problem in Cartesian coordinate
system, by minimizing the weighted perpendicular distance of points to a line. They
also show how to calculate the covariance of the estimated line parameters(α, d) de-
pending on the noise in the range readings. However there are some minor details
missing, therefore we will attempt to derive a covariance estimate for a simplified case
while following a similar approach to theirs. In [1] the line parameter estimate is:

tan 2α =
−2
∑

wi(ȳw − yi)(x̄w − xi)∑
wi [(ȳw − yi)2 − (x̄w − xi)2]

(130)

d = x̄w cos α + ȳw sinα (131)

For computations, they recommend to use in eq. 130 the four quadrant arctangent.
For simplicity, we have derived the covariance estimate only for a special case of

the previous equations where the weights are uniform:

tan 2α =
−2
∑

(ȳ − yi)(x̄− xi)∑
[(ȳ − yi)2 − (x̄− xi)2]

=
N

D
= f (132)

d = x̄ cos α + ȳ sinα (133)

Lets introduceb asb = [α d]T = g(α, d). Then the first order Taylor expansion ofb
is:

∆b = ∇g(x,y)∆
[
xT yT

]T
= J∆

[
xT yT

]T
(134)
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whereJ is the Jacobian of eq.132-133. If the Jacobian is known, the covariance of
(α, d) can be approximated as:

Cov(α, d) = Cα,d = JCxyJT (135)

Elements of the Jacobian were calculated as following:

Jj,1 =
∂α

∂xj
=

1
2

∂ arctan(f)
∂f

∂f

∂xj
=

=
1
2

1
1 + f2

∂N
∂xj

M −N ∂D
∂xj

D2
=

(ȳ − yj)D − (x̄− xj)N
N2 + D2

(136)

Jn+j,1 =
∂α

∂yj
=

1
2

∂ arctan(f)
∂f

∂f

∂yj
=

=
1
2

1
1 + f2

∂N
∂yj

M −N ∂D
∂yj

D2
=

(x̄− xj)D + (ȳ − yj)N
N2 + D2

(137)

Jj,2 =
∂d

∂xj
=

∂x̄

∂xj
cos α + x̄

∂α

∂xj
+ ȳ

∂ sinα

∂xj
=

=
1
n

cos α + (ȳ cos α− x̄ sinα)
∂α

∂xj
(138)

Jn+j,2 =
∂d

∂yj
= ȳ

∂ sinα

∂yj
+

∂ȳ

∂yj
sinα + ȳ

∂ sinα

∂yj
=

=
1
n

sinα + (ȳ cos α− x̄ sinα)
∂α

∂yj
(139)

where the following identities were used:

∂x̄

∂xj
=

1
n

∂
∑

xi

∂xj
=

1
n

(140)

∂ȳ

∂yj
=

1
n

∂
∑

yi

∂yj
=

1
n

(141)

∂N

∂xj
= −2

∑
i

[(ȳ − yi)(x̄− xi)] =

= −2

∑
i 6=j

ȳ − yi

n
+ (ȳ − yj)(

1
n
− 1)

 = 2(ȳ − yj) (142)

∂N

∂yj
= 2(x̄− xj) (143)

∂D

∂xj
=
∑

i

∂

∂xj

[
(ȳ − yi)2 − (x̄− xi)

]2
=

= −2
∑
i 6=j

x̄− xi

n
− 2(x̄− xj)(

1
n
− 1) = 2(x̄− xi) (144)

∂D

∂yj
= −2(ȳ − yi) (145)

Calculating the covariance matrix of(α, d) directly from eq. 135 is not a good idea,
becauseCxy is of size2n×2n. However if the individual measurements are considered
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to be independent then the covariance can be calculated as:

Cα,d =
n∑
i

JiCxyiJT
i =

n∑
i

[
∂α
∂xi

∂α
∂yi

∂d
∂xi

∂d
∂yi

]
Cxyi

[
∂α
∂xi

∂d
∂xi

∂α
∂yi

∂d
∂yi

]
(146)

whereCxyi
can be approximated after a first order Taylor expansion as:

Cxyi =
[
−ri sinφi cos φi

ri cos φi sinφi

] [
σ2

φ 0
0 σ2

r

] [
−ri sinφi ri cos φi

cos φi sinφi

]
(147)

Or the expanded form can be used:

σ2
xi = r2

i σ2
φ sin2 φi + σ2

r cos2 φi (148)

σ2
yi = r2

i σ2
φ cos2 φi + σ2

r sin2 φi (149)

σxyi = (σ2
r − r2

i σ2
φ) sinφi cos φi (150)

A.4 Derivation of eq. 60–61

What we want to know is, how line parameters change if the true ranges of horizontal
line are perturbed. Lets assume, we have a line with parameters(α, d). Then our line
can be described as:

ri =
d

cos(α− φi)
(151)

If we assume to have a horizontal line with the true parameters(α0 = π
2 , d0) and if we

linearize eq. 151 around(α0, d0) we get:

ξi = ri − r0i ≈
∆d

sinφi
+

d0 cos φi

sin2 φi

= ai∆d + bi∆α (152)

whereai = 1
sin φi

andbi = d0 cos φi

sin2 φi
.

We can interpretξi as the range difference we get if we add(∆α, ∆d) to (α0, d0).
Therefore if we know that a bias ofξmi is added to each true range, then we can get an
estimate of∆α, ∆d if we minimize sum of square deviations between the biasξmi and
the estimated range differenceξi:

E =
∑

(ξi − ξmi)
2 =

∑
(ai∆d + bi∆α− ξmi)

2 (153)

To find∆α, ∆d which minimize E, we need to differentiate eq. 153 with respect to∆α
and∆d, and find out where are they equal to 0:

∂E

∂∆α
= 2

∑
(ai∆d + bi∆α− ξmi) ai = 0 (154)

∂E

∂∆d
= 2

∑
(ai∆d + bi∆α− ξmi) bi = 0 (155)

Expanding the previous equations and dividing by 2 results in:

∆d
∑

a2
i + ∆α

∑
biai =

∑
ξmiai (156)

∆d
∑

aibi + ∆α
∑

b2
i =

∑
ξmibi (157)
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of which solution is:

∆α =
∑

ξmiai

∑
aibi −

∑
ξmibi

∑
a2

i

(
∑

biai)
2 −

∑
b2
i

∑
a2

i

(158)

∆d =
∑

ξmibi

∑
aibi −

∑
ξmiai

∑
b2
i

(
∑

biai)
2 −

∑
b2
i

∑
a2

i

(159)

The last two equations are special case of the approach shown in section 2.3 for
estimating lines in polar coordinate system. The difference is that only one iteration is
made (small range deviations are assumed) and the true line must be horizontal.

B More Experimental Results

B.1 Covariance and Correlation Coefficient Matrices of Range Read-
ings

To support our assumption, that estimating the range measurement covariance matrix
as a diagonal matrix is sufficient, we show the first 7x7 sub-matrices of the covariance
and correlation coefficient matrices of range readings for line 1 and 13 (see fig. 9). All
matrices in graphical representation are shown on fig. 7. For the calculation of these
matrices, about 3000 samples were used.

cov1 =



3.502 0.385 −0.016 0.242 0.173 0.001 0.364
0.385 4.704 −0.051 0.266 0.673 0.200 0.367
−0.016 −0.051 5.335 1.080 0.422 0.471 0.235
0.242 0.266 1.080 6.186 1.232 0.253 0.558
0.173 0.673 0.422 1.232 7.357 1.308 0.769
0.001 0.200 0.471 0.253 1.308 8.809 0.528
0.364 0.367 0.235 0.558 0.769 0.528 7.954


(160)

corr1 =



1.000 0.095 −0.004 0.052 0.034 0.000 0.069
0.095 1.000 −0.010 0.049 0.114 0.031 0.060
−0.004 −0.010 1.000 0.188 0.067 0.069 0.036
0.052 0.049 0.188 1.000 0.183 0.034 0.079
0.034 0.114 0.067 0.183 1.000 0.163 0.101
0.000 0.031 0.069 0.034 0.163 1.000 0.063
0.069 0.060 0.036 0.079 0.101 0.063 1.000


(161)

cov13 =



6.008 0.062 −0.003 −0.576 0.145 −0.165 0.344
0.062 2.430 0.242 0.293 0.119 0.211 0.066
−0.003 0.242 4.128 0.272 −0.042 0.124 0.034
−0.576 0.293 0.272 6.329 0.216 0.131 −0.086
0.145 0.119 −0.042 0.216 2.579 0.077 0.140
−0.165 0.211 0.124 0.131 0.077 5.362 0.343
0.344 0.066 0.034 −0.086 0.140 0.343 5.562


(162)
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corr13 =



1.000 0.016 −0.001 −0.093 0.037 −0.029 0.060
0.016 1.000 0.076 0.075 0.048 0.058 0.018
−0.001 0.076 1.000 0.053 −0.013 0.026 0.007
−0.093 0.075 0.053 1.000 0.054 0.022 −0.014
0.037 0.048 −0.013 0.054 1.000 0.021 0.037
−0.029 0.058 0.026 0.022 0.021 1.000 0.063
0.060 0.018 0.007 −0.014 0.037 0.063 1.000


(163)

As it can be seen from eq. 161,163, the correlation coefficients are most of the time
quite small.
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